Measuring Wikipedia Article Quality in One Continuous Dimension

Accurately estimating the quality of Wikipedia articles is important task for both researchers and Wikipedia community members. In a forthcoming paper in the Proceedings of the OpenSym 2021, I describe a new method for estimating article quality in Wikipedia in one dimension that builds on the widely used ORES quality model and that improves on the techniques researches have used to incorporate measures of quality into their studies of Wikipedia in the past. I will presenting virtually this week at the OpenSym 2021 conference. OpenSym is free and open to the public this year but requires registration.

Numerous efforts have gone into measuring the quality of Wikipedia articles and the Wikimedia Foundation maintains a machine learning model for measuring article quality on English Wikipedia called the ORES quality model. This model is trained on quality assessments conducted by members of WikiProjects that label articles into hierarchy of quality levels (i.e., stub, start-class, C-class, B-class, Good, Featured) and use boosted decision trees to predict the quality of versions of articles. This model is useful because it can predict the quality of versions of articles that haven’t been assessed. My OpenSym paper (teaser video, full presentation) builds on the ORES quality models to improve measuring Wikipedia article quality in one continuous dimension using ordinal regression models. A 1-D real-valued measure of quality is more granular and easier to use in downstream research. My method also increases the accuracy of quality prediction for units of analysis that are most important for research like articles or revisions and also estimates spacing between different levels of article quality.

Quality scores and predictions of the ordinal regression models. Columns in the grid of charts correspond to the ordinal quality model calibrated to the indicated unit of analysis and rows correspond to sampled articles having the indicated level of quality as assessed by Wikipedians. Each chart shows the histogram of scores, thresholds inferred by the ordinal model with 95% credible intervals colored in gray, and colors indicating when the model makes correct or incorrect predictions. The thresholds are not evenly spaced, especially in revision model and article model that have more weight on lower quality classes. These two models infer that the gaps between Stub and Start and between Start and C-class articles are considerably wider than the gap between C-class and B-class articles.

An important limitation of the ORES quality models is that they do not output a single real-valued quality score. Instead, they output a multinomial distribution of the probability of an article’s quality class. This means that instead of saying “article X has quality 0.3” the model tells you “the probability of article X’s quality class is 0.1 for stub, 0.2 for start-class, 0.5 for C-class, 0.15 for B-class, 0.05 for Good and 0 for featured and the most probable quality class (MPQC) is C.” Using this kind of output in a downstream statistical analysis is kind of messy. For example, it might seem reasonable to use the MPQC as an integer-valued measure of quality, but this throws away information. Suppose ORES says that “the probability of article Y’s quality class is 0.00 for stub, 0.15 for start-class, 0.5 for C-class, 0.2 for B-class, 0.1 for Good, and 0.05 for Featured” According to the ORES quality model, Y probably has greater quality than X. Even though both have a MPQC of C-class, there’s a much greater change for article Y to be B-class or better than for article X. Is there a way to use the ORES probabilities to build a more granular measure of quality that accounts for this difference?

Aaron Halfaker, one of the creators of the ORES system, combined the probabilities into a 1-D score for one of his research projects by taking a weighed sum of the probabilities and assuming that Wikipedia article quality levels are “evenly spaced.” This creates a score out of the quality class probabilities by multiplying each probability by a weight so that probabilities for higher quality levels get more weight. He chose the weights [0,1,2,3,4,5] so an article gets 0 quality points for being a probable stub, 1 for the probability of being start-class, 2 for C-class, and so on with 5 points for Featured. This results in a nice continuous measure of quality that simplifies downstream statistical analysis. A number of others have followed his lead.

But how reasonable is the “evenly spaced” assumption that supports using the weights [0,1,2,3,4,5]? Could there be a way to pick weights to combine the ORES probabilities without using this assumption? My paper explains why ordinal regression is the right tool for the job and proposes a procedure for fitting an ordinal regression model to a sample representative of a unit of analysis like articles or revisions or quality classes that have been labeled by a WikiProject and scored by the ORES quality model. The ordinal regression predicts the quality labels as a function of the ORES scores and in this way finds a good way to combine the ORES scores into a single value. It also infers threshold parameters that define different regions of the quality score corresponding to quality classes and this allows the “evenly spaced” assumption to be tested. The figure above shows that the article quality levels are not evenly spaced! Interestingly, the way that they are unevenly spaced depends on how quality is measured. If the quality scale is designed to be accurate across all quality classes, then the quality levels are relatively even. However, if it is designed to be accurate for revisions or articles then more of the scale goes to lower levels of quality. Overall, the models agree that the difference between C-class and Start articles is smaller than that between the other levels.

Using the quality scores based on ordinal regression also improves accuracy. This mostly comes from calibrating the ordinal model to the appropriate unit of analysis. The ORES quality model is fit on a “balanced” dataset where each quality class is equally represented. This means that the ORES quality model has learned that each quality class is equally likely to occur in the data. Of course, in reality lower quality articles are far more common than high quality articles. There are over 3,000,000 Stubs on English Wikipedia but less than 8,000 Featured articles. As the table below shows, fitting ordinal models that know the true proportion of each quality class in a sample can improve accuracy compared to the ORES quality model.

Accuracy of quality prediction models depends on the unit of analysis. The greatest accuracy scores are highlighted. Models are more accurate when calibrated on the same unit of analysis on which they are evaluated. Compared to the MPQC, the ordinal quality models have better accuracy when revisions or articles are the unit of analysis. When the quality class is the unit of analysis, the ordinal quality model has slightly worse accuracy.

Even though my study has found evidence against the “evenly spaced” assumption, I also found that the quality scores based on it are strongly correlated with the scores from the ordinal model as shown in the figure below. The ‘𝜏’ symbols in the figure stand for the Kendall rank correlation coefficient while the ‘r’ symbols stand for the Pearson correlation coefficient. I used the Kendall correlation because it can capture nonlinear divergences between the measures and the Pearson coefficient is the familiar linear correlation. The “evenly spaced” scores aren’t totally in agreement with the scores from the ordinal models, but they are close enough that I doubt that prior research that used the “evenly spaced” scores to measure quality was mislead by this choice.

Correlations between quality measures show that the different approaches to measuring quality are quite similar. “Evenly spaced” uses the weighted sum of the ORES scores with handpicked coefficients [0,1,2,3,4,5]. Lower values of Kendall’s 𝜏, a nonparametric rank correlation statistic, compared to Pearson’s 𝑟 suggest nonlinear differences between the weighted sum and the other measures.

Conclusions

Measuring article quality in one continuous dimension is a valuable tool for studying the peer production of information goods because it provides granularity and is amenable to statistical analysis. Prior approaches extended ORES article quality prediction into a continuous measure under the “evenly spaced” assumption. I used ordinal regression models to transform the ORES predictions into a continuous measure of quality that is interpretable as a probability distribution over article quality levels, provides an account of its own uncertainty and does not assume that quality levels are “evenly spaced.” Calibrating the models to the chosen unit of analysis improves accuracy for research applications. I recommend that future work adopt this approach when article quality is an independent variable in a statistical analysis.

My paper also has a number of other tidbits about the uncertainty of different quality measures, the importance of feedback between measurement and knowledge in the scientific process and demonstrates model calibration.


A preprint of the paper is available here. The paper has been accepted to OpenSym 2021 and will be presented at the virtual conference on September 17th. A video of the presentation is available here. A dataverse repository containing code and data from the project is available here.

Why do people participate in small online communities?

The number of unique commenters who commented on subreddits in March 2020, for subreddits that had at least 1 comment in the each of the previous 23 months. The “SR” communities are those we drew our interview sample from.

When it comes to online communities, we often assume that bigger is better. Large communities can create robust interactions, have access to broad and extensive body of experiences, and provide many opportunities for connections. As a result, small communities are often thought as failed attempts to build big ones. In reality, most online communities are very small and most small communities remain small throughout their lives.  If growth and a large number of members are so advantageous, why do small communities not only exist but persist in their smallness?

In a recent research study, we investigated why individuals participate in these persistently small online communities by interviewing twenty participants of small subreddits  on Reddit. We asked people about their motivations and explicitly tried to get them to compare their experiences in small subreddits with their experience in larger subreddits. Below we present three of the main things that we discovered through analyzing our conversations.

Size of consistently active subreddits over time (i.e., those with at least one comment per month from April 2018 to March 2020). Subreddits are grouped by their size in April 2018. Lines represent the median size each month, and ribbons show the first and third quartiles.

Informational niches

First, we found that participants saw their small communities as unique spaces for information and interaction. Frequently, small communities are narrower versions or direct offshoots of larger communities. For example, the r/python community is about the programming language Python while the r/learnpython community is a smaller community explicitly for newcomers to the language. 

By being in a smaller, more specific community, our participants described being able to better anticipate the content, audience, and norms: a specific type of content, people who cared about the narrow topic just like them, and expectations of how to behave online. For example, one participant said:

[…] I can probably make a safe assumption that people there more often than not know what they’re talking about. I’ll definitely be much more specific and not try to water questions down with like, my broader scheme of things—I can get as technical as possible, right? If I were to ask like the same question over at [the larger parent community], I might want to give a little bit background on what I’m trying to do, why I’m trying to do it, you know, other things that I’m using, but [in small community], I can just be like, hey, look, I’m trying to use this algorithm for this one thing. Why should I? Or should I not do it for this?

Curating online experiences

More broadly, participants explained their participation in these small communities as part of an ongoing strategy of curating their online experience. Participants described a complex ecosystem of interrelated communities that the small communities sat within, and how the small communities gave them the ability to select very specific topics, decide who to interact with, and manage content consumption.

In this sense, small communities give individuals a semblance of control on the internet. Given the scale of the internet—and a widespread sense of malaise with online hate, toxicity, and harassment—it is possible that controlling the online experience is more important to users than ever. Because of their small size, these small communities were largely free of the vandals and trolls that plague large online communities, and  several participants described their online communities as special spaces to get away from the negativity on the rest of the internet. 

Relationships

Finally, one surprise from our research was what we didn’t find. Previous research led us to predict that people would participate in small communities because they would make it easier to develop friendships with other people. Our participants described being interested in the personal experiences of other group members, but not in building individual relationships with them.

Conclusions

Our research shows that small online communities play an important and underappreciated role. At the individual level, online communities help people to have control over their experiences, curating a set of content and users that is predictable and navigable. At the platform level, small communities seem to have a symbiotic relationship with large communities. By breaking up broader topical niches, small communities likely help to keep a larger set of users engaged.

We hope that this paper will encourage others to take seriously the role of small online communities. They are qualitatively different from large communities, and more empirical and theoretical research is needed in order to understand how communities of different sizes operate and interact in community ecosystems.


A preprint of the paper is available here. We’re excited that this paper has been accepted to CSCW2021 and will be published in the Proceedings of the ACM on Human-Computer Interaction and presented at the conference in November. If you have any questions about this research, please feel free to reach out to one of the authors: Sohyeon Hwang or Jeremy Foote.

Apply to Join the Community Data Science Collective as a PhD student!

It’s Ph.D. application season and the Community Data Science Collective is recruiting! As always, we are looking for talented people to join our research group. Applying to one of the Ph.D. programs that the CDSC faculty members are affiliated with is a great way to do that.

This post provides a very brief run-down on the CDSC, the different universities and Ph.D. programs we’re affiliated with, and what we’re looking for when we review Ph.D. applications. It’s close to the deadline for some of our programs, but we hope this post will still be useful to prospective applicants now and in the future.

Group photo of the collective at a recent virtual retreat.

What is the Community Data Science Collective?

The Community Data Science Collective (or CDSC) is a joint research group of (mostly) quantitative social scientists and designers pursuing research about the organization of online communities, peer production, online communities, and learning and collaboration in social computing systems. We are based at Northwestern University, the University of Washington, Carleton College, the University of North Carolina, Chapel Hill, Purdue University, and a few other places. You can read more about us and our work on our research group blog and on the collective’s website/wiki.

What are these different Ph.D. programs? Why would I choose one over the other?

This year the group includes four faculty principal investigators (PIs) who are actively recruiting PhD students: Aaron Shaw (Northwestern University), Benjamin Mako Hill and Sayamindu Dasgupta (University of Washington in Seattle), and Jeremy Foote (Purdue University). Each of these PIs advise Ph.D. students in Ph.D. programs at their respective universities. Our programs are each described below.

Although we often work together on research and serve as co-advisors to students in each others’ projects, each faculty person has specific areas of expertise and interests. The reasons you might choose to apply to one Ph.D. program or to work with a specific faculty member could include factors like your previous training, career goals, and the alignment of your specific research interests with our respective skills.

At the same time, a great thing about the CDSC is that we all collaborate and regularly co-advise students across our respective campuses, so the choice to apply to or attend one program does not prevent you from accessing the expertise of our whole group. But please keep in mind that our different Ph.D. programs have different application deadlines, requirements, and procedures!

Who is actively recruiting this year?

Given the disruptions and uncertainties associated with the COVID19 pandemic, the faculty PIs are more constrained in terms of whether and how they can accept new students this year. If you are interested in applying to any of the programs, we strongly encourage you to reach out the specific faculty in that program before submitting an application.

Ph.D. Advisors

Sayamindu Dasgupta head shot
Sayamindu Dasgupta

Although he is currently at the University of North Carolina, Sayamindu Dasgupta will starting this year as an Assistant Professor in the Department of Human-Centered Design and Engineering at the University of Washington. Sayamindu’s research focus includes data science education for children and informal learning online—this work involves both system building and empirical studies.

Benjamin Mako Hill

Benjamin Mako Hill is an Assistant Professor of Communication at the University of Washington. He is also an Adjunct Assistant Professor at UW’s Department of Human-Centered Design and Engineering (HCDE), Computer Science and Engineering (CSE) and Information School. Although many of Mako’s students are in the Department of Communication, he has also advised students in all three other departments—although he typically has more limited ability to admit students into those programs. Mako’s research focuses on population-level studies of peer production projects, computational social science, efforts to democratize data science, and informal learning. Mako has also put together a webpage for prospective graduate students with some useful links and information..

Aaron Shaw. (Photo credit: Nikki Ritcher Photography, cc-by-sa)

Aaron Shaw is an Associate Professor in the Department of Communication Studies at Northwestern. In terms of Ph.D. programs, Aaron’s primary affiliations are with the Media, Technology and Society (MTS) and the Technology and Social Behavior (TSB) Ph.D. programs. Aaron also has a courtesy appointment in the Sociology Department at Northwestern, but he has not directly supervised any Ph.D. advisees in that department (yet). Aaron’s current research projects focus on comparative analysis of the organization of peer production communities and social computing projects, participation inequalities in online communities, and empirical research methods.

Jeremy Foote

Jeremy Foote is an Assistant Professor at the Brian Lamb School of Communication at Purdue University. He is affiliated with the Organizational Communication and Media, Technology, and Society programs. Jeremy’s current research focuses on how individuals decide when and in what ways to contribute to online communities, how communities change the people who participate in them, and how both of those processes can help us to understand which things become popular and influential. Most of his research is done using data science methods and agent-based simulations.

What do you look for in Ph.D. applicants?

There’s no easy or singular answer to this. In general, we look for curious, intelligent people driven to develop original research projects that advance scientific and practical understanding of topics that intersect with any of our collective research interests.

To get an idea of the interests and experiences present in the group, read our respective bios and CVs (follow the links above to our personal websites). Specific skills that we and our students tend to use on a regular basis include experience consuming and producing social science and/or social computing (human-computer interaction) research; applied statistics and statistical computing, various empirical research methods, social theory and cultural studies, and more.

Formal qualifications that speak to similar skills and show up in your resume, transcripts, or work history are great, but we are much more interested in your capacity to learn, think, write, analyze, and/or code effectively than in your credentials, test scores, grades, or previous affiliations. It’s graduate school and we do not expect you to show up knowing how to do all the things already.

Intellectual creativity, persistence, and a willingness to acquire new skills and problem-solve matter a lot. We think doctoral education is less about executing a task that someone else hands you and more about learning how to identify a new, important problem; develop an appropriate approach to solving it; and explain all of the above and why it matters so that other people can learn from you in the future. Evidence that you can or at least want to do these things is critical. Indications that you can also play well with others and would make a generous, friendly colleague are really important too.

All of this is to say, we do not have any one trait or skill set we look for in prospective students. We strive to be inclusive along every possible dimension. Each person who has joined our group has contributed unique skills and experiences as well as their own personal interests. We want our future students and colleagues to do the same.

Now what?

Still not sure whether or how your interests might fit with the group? Still have questions? Still reading and just don’t want to stop? Follow the links above for more information. Feel free to send at least one of us an email. We are happy to try to answer your questions and always eager to chat.

Community Data Science Collective Research at DebConf 2021

Debian is one of the oldest, largest, and most influential peer production communities and has produced an operating system used by millions for over the last three decades. DebConf is that community’s annual meeting. This year, the Community Data Science Collective was out in force at Debian’s virtual conference to present several Debian-focused research projects that we’ve been working on.

First, Wm Salt Hale presented work from his master thesis project on “Resilience in FLOSS: Do founder decisions impact development activity after crisis events?” His work tried to understand the social dynamics behind organizational resilience among free software projects based on what Salt calls “founder decisions.” He did so by estimating the relationship between changes in developer activity after security bugs and testing several theories about how this relationship might vary between permissive and copyleft licensed software packages.

Wm Salt Hale’s presentation plus Q&A. (WebM available)

Next, Kaylea and Salt facilitated a “birds-of-a-feather” get-together session for FLOSS project founders (video is also available).

Finally, Kaylea Champion presented her work with Benjamin Mako Hill on “Detecting At Risk Software in Debian.” Her work described a new technique that involves identifying software packages that are less (or more) high quality than you we might expect given their popularity. You can read more about that work in our blog post from earlier this year.

Kaylea Champion’s presentation plus Q&A. (WebM available)

If you saw either presentation and are interested in continuing the conversation, you are welcome to reach out to us individually ({kaylea OR halew}@uw.edu). You can also follow us on this blog, or follow or engage with us in the Fediverse (@communitydata@social.coop), or on Twitter (@comdatasci).

Do generous attitudes underlie contributions to user-generated content?

User-generated content on the Internet provides the basis for some of the most popular websites, such as Wikipedia, crowdsourced question-and-answer sites like Stack Overflow, video-sharing sites like YouTube, and social media platforms like Reddit. Much (or in some cases all) of the content on these sites is created by unpaid volunteers, who invest substantial time and effort to produce high quality information resources. So are these volunteers and content contributors more generous in general than people who don’t contribute their time, knowledge, or information online?

We (Floor Fiers, Aaron Shaw, and Eszter Hargittai) consider this question in a recent paper published in The Journal of Quantitative Description: Digital Media (JQD:DM). The publication of this particularly is exciting because it pursues a new angle on these questions, and also because it’s part of the inaugural issue of JQD:DM, a new open-access venue for research that seeks to advance descriptive (as opposed to analytic or causal) knowledge about digital media.

The study uses data from a national survey of U.S. adult internet users that includes questions about many kinds of online contribution activities, various demographic and background attributes, as well as a dictator game to measure generosity. In the dictator game, each participant has an opportunity to make an anonymous donation of some unanticipated funds to another participant in the study. Prior experimental research across the social sciences has used dictator games, but no studies we know of had compared dictator game donations with online content contributions.

Sharing content. GotCredit via flickr.

Overall, we find that people who contribute some kind of content online exhibit more generosity in the dictator game. More specifically, we find that people producing any type of user-generated content tend to donate more in the dictator game than those who do not produce any such content. We also disaggregate the analysis by type of content contribution and find that donating in the dictator game only correlates with content contribution for those who write reviews, upload public videos, pose or answer questions, and contribute to encyclopedic knowledge collections.

So, generous attitudes and behaviors may help explain contributions to some types of user-generated content, but not others. This implies that user-generated content is not a homogeneous activity, since variations exist between different types of content contribution.

The (open access!) paper has many more details, so we hope you’ll download, read, and cite it. Please feel free to leave a comment below too.

Paper Citation: Fiers, Floor, Aaron Shaw, and Eszter Hargittai. 2021. “Generous Attitudes and Online Participation”. Journal of Quantitative Description: Digital Media 1 (April). https://doi.org/10.51685/jqd.2021.008.

CDSC is hiring a staff person!

Group photo of many of the collective members at a virtual retreat in Spring 2021.

Do you (or someone you know) care about online communities and organizing, scientific research, education, and sharing ideas? We are looking for a person to join us and help grow our research and public impact. The (paid, part-time with benefits) position will focus on responsibilities such as research assistance, research administration, communications and outreach. 

This is a new position and will be the first dedicated staff member with the group. The person who takes the job will shape the role together with us based on their interests and skills.  While we have some ideas about the qualifications that might make somebody a compelling candidate (see below), we are eager to hear from anyone who is willing to get involved, learn on the job, and collaborate with us. You do not need to be an expert or have decades of experience to apply for this job. We aim to value and build on applicants’ experiences.

The position is about half time (25 hours per week) through Northwestern University and could be performed almost entirely remotely (the collective hosts in-person meetings and workshops when public health/safety allows). The salary will start at around $30,000 per year and includes excellent benefits through Northwestern. We’re looking for a minimum 1 year commitment.

Expected responsibilities will likely fall into three areas:

  • Support research execution (example: develop materials to recruit study participants)
  • Research administration (example: manage project tracking, documentation)
  • Community management (example: plan meetings with partner organizations)

Candidates must hold at least a bachelor’s degree. Familiarity with scientific research, project management, higher education, and/or event planning is a plus, as is prior experience in the social or computer sciences, research organizations, online communities, and/or public interest technology and advocacy projects of any kind.

To learn more about the Community Data Science Collective, you should check out our wiki, read previous posts on this blog, and look at some of our recent publications. Please feel free to contact anyone in the group with questions. We are committed to creating a diverse, inclusive, equitable, and accessible work environment within our collective and we look forward to working with someone who shares these values.

Ready to apply? Please do so via this Northwestern University job posting.  We are reviewing applications on a rolling basis and hope to hire someone to begin later this summer.

Workshop Announcement: Imagining Future Tools for Youth Data Literacies @ CLS2021

As today’s youth come of age in an increasingly data-driven world, the development of new literacies is increasingly important. Young people need both skills to work with, analyze, and interpret data, as well as an understanding of the complex social issues surrounding the collection and use of data. But how can today’s youth develop the skills they need?

We will exploring this question during an upcoming workshop on Imagining Future Designs of Tools for Youth Data Literacies, one of the offerings at this year’s Connected Learning Summit. As co-organizers for this workshop, we are motivated by our interest in how young people learn to work with and understand data. We are also curious about how other people working in this area define the term ‘data literacy’ and what they feel are the most critical skills for young people to learn. As there are a number of great tools available to help young people learn about and use data, we  also hope to explore which features of these tools made them most effective. We are looking forward to discussions on all of these issues during the workshops.

This workshop promises to be an engaging discussion of existing tools available to help young people work with and understand data (Session 1) and an exploration of what future tools might offer (Session 2). We invite all researchers, educators, and other practitioners to join us for one or both of these sessions. We’re hoping for all attendees to come away with a deeper understanding of data literacies and how to support youth in developing data literacy skills.

Information on registering for the Connected Learning Summit available at: https://connectedlearningsummit.org/

To register interest in attending the Youth Data Literacies Workshop, please complete the pre-registration form at: http://dataliteracies.com/

The workshop is organized by Community Data Science Collective members Regina Cheng, Stefania Druga, Emilia Gan, and Benjamin Mako Hill in collaboration with Rahul Bhargava, Tamara Clegg, Catherine D’Ignazio, Yasmin Kafai, Victor Lee, Camillia Matuk, and Andee Rubin.

Community Data Science Collective at ICA 2021

As we do every year, members of the Community Data Science Collective will be presenting work at the International Communication Association (ICA)’s 71st Annual Conference which will take place virtually next week. Due to the asynchronous format of ICA this year, none of the talks will happen at specific times. Although the downside of the virtual conference is that we won’t be able to meet up with you all in person, the good news is that you’ll be able to watch our talks and engage with us on whatever timeline suits you best between May 27 and and 31st.

This year’s offerings from the collective include:

Nathan TeBlunthuis will be presenting work with Benjamin Mako Hill as part of the ICA Computational Methods section on “Time Series and Trends in Communication Research.” The name of their talk is “A Community Ecology Approach for Identifying Competitive and Mutualistic Relationships Between Online Communities.”

Aaron Shaw is presenting a paper on “Participation Inequality in the Gig Economy” on behalf of himself, Floor Fiers and Eszter Hargittai . The talk will be as part of a session organized by the ICA Communication and Technology section on “From Autism to Uber: The Digital Divide and Vulnerable Populations.”

Floor Fiers collaborated with Nathan Walter on a poster titled “Sharing Unfairly: Racial Bias on Airbnb and the Effect of Review Valence.” The poster is part of the interactive poster session of the ICA Ethnicity and Race section.

Nick Hager will be talking about his paper with Aaron Shaw titled “Randomly-Generated Inequality in Online News Communities,” which is part of a high density session on “Social Networks and Influence.”

Finally, Jeremy Foote will be chairing a session on “Cyber Communities: Conflicts and Collaborations” as part of the ICA Communication and Technology division.

We look forward to sharing our research and connecting with you at ICA!

UPDATE: The paper led by Nathan TeBlunthuis won the best paper award from the ICA Computational Methods section! Congratulations, Nate!

Newcomers, Help, Feedback, Critical Infrastructure….: Social Computing Scholarship at SANER 2021

This year I was fortunate to present to the 2021 IEEE International Conference on Software Analysis, Evolution and Re-engineering or “SANER 2021.” You can see the write-up of my own presentation on “underproduction” elsewhere on this blog.

SANER is primarily focused on software engineering practices, and several of the projects presented this year were of interest for social computing scholars. Here’s a quick rundown of presentations I particularly enjoyed:

Newcomers: Does marking a bug as a ‘Good First Issue’ help retain newcomers? These results from Hyuga Horiguchi, Itsuki Omori and Masao Ohira suggest the answer is “yes.” However, marking documentation tasks as a ‘Good First Issue’ doesn’t seem to help with the onboarding process. Read more or watch the talk at: Onboarding to Open Source Projects with Good First Issues: A Preliminary Analysis [VIDEO]

Comparison of online help communities: This article by Mahshid Naghashzadeh, Amir Haghshenas, Ashkan Sami and David Lo compares two question/answer environments that we might imagine as competitors—the Matlab community of Stack Overflow versus the Matlab community hosted by Matlab. These sites have similar affordances and topics, however, the two sites seem to draw distinctly different types of questions. This article features an extensive hand-coded dataset by subject matter experts: How Do Users Answer MATLAB Questions on Q&A Sites? A Case Study on Stack Overflow and MathWorks [VIDEO]

Feedback: What goes wrong when software developers give one another feedback on their code? This study by a large team (Moataz Chouchen, Ali Ouni, Raula Gaikovina Kula, Dong Wang, Patanamon Thongtanunam, Mohamed Wiem Mkaouer and Kenichi Matsumoto) offers an ontology of the pitfalls and negative interactions that can occur during the popular code feedback practice known as code review: confused reviewers, divergent reviewers, low review participation, shallow review, and toxic review:
Anti-patterns in Modern Code Review: Symptoms and Prevalence [VIDEO]

Critical Infrastructure: This study by Mahmoud Alfadel, Diego Elias Costa and Emad Shihab was focused on traits of security problems in Python and made some comparisons to npm. This got me thinking about different community-level factors (like bug release/security alert policies) that may influence underproduction. I also found myself wondering about inter-rater reliability for bug triage in communities like Python. The paper showed a very similar survival curve for bugs of varying severities, whereas my work in Debian showed distinct per-severity curves. One explanation for uniform resolution rate across severities could be high variability in how severity ratings are applied. Another factor worth considering may be the role of library abandonment: Empirical analysis of security vulnerabilities in python packages [VIDEO]

Mako Hill gets an NSF CAREER Award!

In exciting collective news, the US National Science Foundation announced that Benjamin Mako Hill has received of one of this year’s CAREER awards. The CAREER is the most prestigious grant that the NSF gives to early career scientists in all fields.

You can read lots more about the award in a detailed announcement that the University of Washington Department of Communication put out, on Mako’s personal blog (or in this Twitter thread and this Fediverse thread), or on the NSF website itself. The grant itself—about $550,000 over five years—will support a ton of Community Data Science Collective research and outreach work over the next half-decade. Congratulations, Mako!