Ants!

cover of

I recently read Deborah M. Gordon’s Ant Encounters and thought I’d summarize some thoughts about it. Gordon is a Professor of Biology at Stanford. The book pulls together several decades of research (hers and others’) on the behavior and ecology of ants. In it, Gordon makes nuanced claims about the importance of communication and interaction for distributed collective behavior in clear, non-technical language. Many of the findings should inspire people (like me) interested in understanding the organization of collective behavior in humans.

Gordon argues that ant behavior and colony dynamics encompass a complex system driven by patterns of interactions, information exchange, and environmental influences. She contrasts this with more deterministic accounts of ants prevalent in earlier scientific literature and popular culture. Gordon emphasizes how ants operate by behavioral heuristics and information processing rather than a fixed set of rules or genetically encoded traits.

Picture of an argentine ant
Argentine ant (cc-by-sa, Penarc, Wikimedia Commons)

Consider the division of labor within an ant colony. The prevailing (wrong) view depicts ants born into a pre-specified, genetically determined “caste” which has a clearly-defined task within a hierarchically structured colony. Following this story, the Queen of the colony births out larva who grow into task-specialized sterile adults. Individuals within each caste supposedly possess physical traits that support their specialization as foragers, trash removers, larva-tenders, patrollers, or whatever. Each individual supposedly pursues their specialized task tirelessly until death.

It turns out that this account reflects a mixture of reasonable misinterpretation and fantastical thinking. First off, Gordon notes, ants change tasks within their life course. Today’s larva-tender may be tomorrow’s forager. These changes do not entail biological changes within each ant (although there seems to be evidence that ants do tend to adopt specific tasks at specific stages of their lives within a colony), but instead reflect responses to interactions with other members of the colony and external forces shaping those interactions. In a younger, less populous colony, ants may change tasks in response to immediate needs and threats that arise suddenly. In larger, more mature colonies where things are less likely to change suddenly, many ants may have more stable activities. Some ants in large colonies even literally sit around doing nothing because the information they receive from their nest-mates indicates that the colonies needs are being met. None of this is fixed by genetic encoding or hierarchical commands.

Second, Gordon shows how ants respond probabilistically to local stimuli. Individual ants, it turns out, act a lot like heuristic distributed sensors or nodes in a communications networkeach with some likelihood of changing its behavior depending on the feedback it receives from its environment. They are not automatons with deterministic programming to pursue a single-minded course of action.

Third, Gordon shows how colonies as a whole change in reaction to their environments and collective interactions. If one colony finds itself in proximity to another, the individuals within it may alter how much collective effort is dedicated to specific tasks depending on the species, size, and temperament of its neighbors. Individual ants respond to the number of nest-mates and neighbors they encounter. If their last ten encounters were with foragers from their home nest returning with food to feed the larval brood, they may continue to go about their business uninterrupted. As the portion of recent interactions includes outsiders or nest-mates responding frantically to an unwelcome intruder of some sort, the probability rises that the next ant will change its behavior in response (maybe to start running around in a panic or bite an intruder).

A picture of harvester ants
Harvester ants collecting seeds (cc-by-sa Donkey Shot, Wikimedia Commons)

Through many examples, Gordon conveys how patterns of collective ant behavior emerge and adapt to local circumstances without a centralized coordination mechanism or hierarchy of control. She describes this almost entirely without recourse to the jargon of complexity theory or complex systems research.

A concrete, measured, and example-driven account of how actually existing complex systems work is maybe the most impressive achievement of the book. Many texts discuss complexity in human and ecological systems, but none that I have read do so with the clarity of Ant Encounters. While I should read more books on these topics, more people in my little corner of the research world should read Gordon’s work too.

Ant Encounters ultimately left me excited to pursue some of the potential extensions and connections between Gordon’s work and research on human social systems and organizations. For example, I’d love to follow up on her comment that higher interaction frequency is associated with colony growth or survival (I currently forget which). Would such a finding hold up in the context of human organizations? If so, what would it look like and mean in the context of building effective peer production systems? Gordon has also written elsewhere about some of the potential connections between ant behavior, human organization, communication protocols. Recent findings from Gordon and her collaborators show how ants follow a set of behavior protocols very similar to those encoded in the TCP specification (apparently, she likes to refer to this idea as “the Anternet“). I’m eager to read more of the scientific publications from Gordon and her collaborators to understand these ideas more deeply and to see how well they travel when applied to a species I know a little bit more about.

OpenSym 2017 Program Published

A few hours ago, OpenSym 2017 kicked off in Galway. For those that don’t know, OpenSym is the International Symposium on Wikis and Open Collaboration (it was called WikiSym until 2014). Its the premier academic venue focused on research on wikis, open collboration, and peer production.

This year, Claudia Müller-Birn and I served as co-chairs of the academic program. Acting as program chair for an ACM conference like OpenSym is more like being a journal editor than a conference organizer. Claudia and I drafted and publicized a call for papers, recruited Associate Chairs and members of a program committee who would review papers and make decisions, coordinated reviews and final decisions, elicited author responses, sent tons of email to notify everybody about everything, and dealt with problems as they came up. It was a lot of work! With the schedule set, and the proceedings now online, our job is officially over!

OpenSym reviewed 43 papers this year and accepted 20 giving the conference a 46.5% acceptance rate. This is similar to both the number of submissions and the acceptance rates for previous years.

In addition to papers, we received 3 extended abstracts for posters for the academic program and accepted 1. There were an additional 7 promising papers that were not accepted but whose authors were invited to present posters and who will be doing so at the conference. The authors of posters will have extended abstracted about their posters published in the non-archival companion proceedings.

The list of papers being published and presented at OpenSym includes:

The following extended abstracts for posters will be published in the companion to the proceedings:

There was also a doctoral consortium and a non-academic ”industry track” which Claudia and I weren’t involved in coordinating.

As part of running the program, we tried a bunch of new things this year including:

  • A move away from separate tracks back to a singlec combined model with Associate Chairs.
  • Bidding for papers among both Associate Chairs and normal PC members.
  • An author rebuttal/response period where authors got to respond to reviews and reviewers.
  • An elimination of page limits for papers. This meant that the category of notes also disappeared. Reviewers were instructed to evaluate the degree to which papers’ contributions were commensurate to their length.

I’m working on a longer post that will evaluate these changes. Until then, enjoy Galway if you were lucky enough to be there. If you couldn’t make it, enjoy the proceedings online!

You can learn more about OpenSym on it’s Wikipedia article on the OpenSym website. You can find details on the schedule and the program itself at its temporary home on the OpenSym website. I’ll update this page with a link to the ACM Digital Library page when it gets posted.

Testing Our Theories About Surviving an “Eternal September”

Graph of subscribers and moderators over time in /r/NoSleep. The image is taken from our 2016 CHI paper.

Last year at CHI 2016, we published a qualitative study examining the effects of a large influx of newcomers to the /r/nosleep online community in Reddit. Our study began with the observation that most research on sustained waves of newcomers focuses on the destructive effect of newcomers and frequently invokes Usenet’s infamous “Eternal September.” Our qualitative study argued that the /r/nosleep community managed its surge of newcomers gracefully through strategic preparation by moderators, technological systems to reign in on norm violations, and a shared sense of protecting the community’s immersive environment among participants.

We are thrilled that, less a year after the publication of our study, Zhiyuan “Jerry” Lin and a group of researchers at Stanford have published a quantitative test of our study’s findings! Lin analyzed 45 million comments and upvote patterns from 10 Reddit communities that a massive inundation of newcomers like the one we studied on /r/nosleep. Lin’s group found that these communities retained their quality despite a slight dip in its initial growth period.

Our team discussed doing a quantitative study like Lin’s at some length and our paper ends with a lament that our findings merely reflected, “propositions for testing in future work.” Lin’s study provides exactly such a test! Lin et al.’s results suggest that our qualitative findings generalize and that sustained influx of newcomers need not doom a community to a descent into an “Eternal September.” Through strong moderation and the use of a voting system, the subreddits analyzed by Lin appear to retain their identities despite the surge of new users.

There are always limits to research projects work—quantitative and qualitative. We think the Lin’s paper compliments ours beautifully, we are excited that Lin built on our work, and we’re thrilled that our propositions seem to have held up!

This blog post was written with Benjamin Mako Hill. Our paper about /r/nosleep, written with Mako Hill and Andrés Monroy-Hernández, was published in the Proceedings of CHI 2016 and is released as open access. Lin’s paper was published in the Proceedings of ICWSM 2017 and is also available online.

Learning to code in one’s own language

Millions of young people from around the world are learning to code. Often, during their learning experiences, these youth are using visual block-based programming languages like Scratch, App Inventor, and Code.org Studio. In block-based programming languages, coders manipulate visual, snap-together blocks that represent code constructs instead of textual symbols and commands that are found in more traditional programming languages.

The textual symbols used in nearly all non-block-based programming languages are drawn from English—consider “if” statements and “for” loops for common examples. Keywords in block-based languages, on the other hand, are often translated into different human languages. For example, depending on the language preference of the user, an identical set of computing instructions in Scratch can be represented in many different human languages:

Although my research with Benjamin Mako Hill focuses on learning, both Mako and I worked on local language technologies before coming back to academia. As a result, we were both interested in how the increasing translation of programming languages might be making it easier for non-English speaking kids to learn to code.

After all, a large body of education research has shown that early-stage education is more effective when instruction is in the language that the learner speaks at home. Based on this research, we hypothesized that children learning to code with block-based programming languages translated to their mother-tongues will have better learning outcomes than children using the blocks in English.

We sought to test this hypothesis in Scratch, an informal learning community built around a block-based programming language. We were helped by the fact that Scratch is translated into many languages and has a large number of learners from around the world.

To measure learning, we built on some of our our own previous work and looked at learners’ cumulative block repertoires—similar to a code vocabulary. By observing a learner’s cumulative block repertoire over time, we can measure how quickly their code vocabulary is growing.

Using this data, we compared the rate of growth of cumulative block repertoire between learners from non-English speaking countries using Scratch in English to learners from the same countries using Scratch in their local language. To identify non-English speakers, we considered Scratch users who reported themselves as coming from five primarily non-English speaking countries: Portugal, Italy, Brazil, Germany, and Norway. We chose these five countries because they each have one very widely spoken language that is not English and because Scratch is almost fully translated into that language.

Even after controlling for a number of factors like social engagement on the Scratch website, user productivity, and time spent on projects, we found that learners from these countries who use Scratch in their local language have a higher rate of cumulative block repertoire growth than their counterparts using Scratch in English. This faster growth was despite having a lower initial block repertoire. The graph below visualizes our results for two “prototypical” learners who start with the same initial block repertoire: one learner who uses the English interface, and a second learner who uses their native language.

Our results are in line with what theories of education have to say about learning in one’s own language. Our findings also represent good news for designers of block-based programming languages who have spent considerable amounts of effort in making their programming languages translatable. It’s also good news for the volunteers who have spent many hours translating blocks and user interfaces.

Although we find support for our hypothesis, we should stress that our findings are both limited and incomplete. For example, because we focus on estimating the differences between Scratch learners, our comparisons are between kids who all managed to successfully use Scratch. Before Scratch was translated, kids with little working knowledge of English or the Latin script might not have been able to use Scratch at all. Because of translation, many of these children are now able to learn to code.


This blog-post and the work that it describes is a collaborative project with Benjamin Mako Hill. You can read our paper here. The paper was published in the ACM Learning @ Scale Conference. We also recently gave a talk about this work at the International Communication Association’s annual conference. We have received support and feedback from members of the Scratch team at MIT (especially Mitch Resnick and Natalie Rusk), as well as from Nathan TeBlunthuis at the University of Washington. Financial support came from the US National Science Foundation.

The Community Data Science Collective Dataverse

I’m pleased to announce the Community Data Science Collective Dataverse. Our dataverse is an archival repository for datasets created by the Community Data Science Collective. The dataverse won’t replace work that collective members have been doing for years to document and distribute data from our research. What we hope it will do is get our data — like our published manuscripts — into the hands of folks in the “forever” business.

Over the past few years, the Community Data Science Collective has published several papers where an important part of the contribution is a dataset. These include:

Recently, we’ve also begun producing replication datasets to go alongside our empirical papers. So far, this includes:

In the case of each of the first groups of papers where the dataset was a part of the contribution, we uploaded code and data to a website we’ve created. Of course, even if we do a wonderful job of keeping these websites maintained over time, eventually, our research group will cease to exist. When that happens, the data will eventually disappear as well.

The text of our papers will be maintained long after we’re gone in the journal or conference proceedings’ publisher’s archival storage and in our universities’ institutional archives. But what about the data? Since the data is a core part — perhaps the core part — of the contribution of these papers, the data should be archived permanently as well.

Toward that end, our group has created a dataverse. Our dataverse is a repository within the Harvard Dataverse where we have been uploading archival copies of datasets over the last six months. All five of the papers described above are uploaded already. The Scratch dataset, due to access control restrictions, isn’t listed on the main page but it’s online on the site. Moving forward, we’ll be populating this new datasets we create as well as replication datasets for our future empirical papers. We’re currently preparing several more.

The primary point of the CDSC Dataverse is not to provide you with way to get our data although you’re certainly welcome to use it that way and it might help make some of it more discoverable. The websites we’ve created (like for the ones for redirects and for page protection) will continue to exist and be maintained. The Dataverse is insurance for if, and when, those websites go down to ensure that our data will still be accessible.


This post was also published on Benjamin Mako Hill’s blog Copyrighteous.

Adventures in onboarding new users on Wikipedia

I recently finished a paper that presents a novel social computing system called the Wikipedia Adventure. The system was a gamified tutorial for new Wikipedia editors. Working with the tutorial creators, we conducted both a survey of its users and a randomized field experiment testing its effectiveness in encouraging subsequent contributions. We found that although users loved it, it did not affect subsequent participation rates.

Start screen for the Wikipedia Adventure.

A major concern that many online communities face is how to attract and retain new contributors. Despite it’s success, Wikipedia is no different. In fact, researchers have shown that after experiencing a massive initial surge in activity, the number of active editors on Wikipedia has been in slow decline since 2007.

The number of active, registered editors (≥5 edits per month) to Wikipedia over time. From Halfaker, Geiger, and Morgan 2012.

Research has attributed a large part of this decline to the hostile environment that newcomers experience when begin contributing. New editors often attempt to make contributions which are subsequently reverted by more experienced editors for not following Wikipedia’s increasingly long list of rules and guidelines for effective participation.

This problem has led many researchers and Wikipedians to wonder how to more effectively onboard newcomers to the community. How do you ensure that new editors Wikipedia quickly gain the knowledge they need in order to make contributions that are in line with community norms?

To this end, Jake Orlowitz and Jonathan Morgan from the Wikimedia Foundation worked with a team of Wikipedians to create a structured, interactive tutorial called The Wikipedia Adventure. The idea behind this system was that new editors would be invited to use it shortly after creating a new account on Wikipedia, and it would provide a step-by-step overview of the basics of editing.

The Wikipedia Adventure was designed to address issues that new editors frequently encountered while learning how to contribute to Wikipedia. It is structured into different ‘missions’ that guide users through various aspects of participation on Wikipedia, including how to communicate with other editors, how to cite sources, and how to ensure that edits present a neutral point of view. The sequence of the missions gives newbies an overview of what they need to know instead of having to figure everything out themselves. Additionally, the theme and tone of the tutorial sought to engage new users, rather than just redirecting them to the troves of policy pages.

Those who play the tutorial receive automated badges on their user page for every mission they complete. This signals to veteran editors that the user is acting in good-faith by attempting to learn the norms of Wikipedia.

An example of a badge that a user receives after demonstrating the skills to communicate with other users on Wikipedia.

Once the system was built, we were interested in knowing whether people enjoyed using it and found it helpful. So we conducted a survey asking editors who played the Wikipedia Adventure a number of questions about its design and educational effectiveness. Overall, we found that users had a very favorable opinion of the system and found it useful.

Survey responses about how users felt about TWA.

 

Survey responses about what users learned through TWA.

We were heartened by these results. We’d sought to build an orientation system that was engaging and educational, and our survey responses suggested that we succeeded on that front. This led us to ask the question – could an intervention like the Wikipedia Adventure help reverse the trend of a declining editor base on Wikipedia? In particular, would exposing new editors to the Wikipedia Adventure lead them to make more contributions to the community?

To find out, we conducted a field experiment on a population of new editors on Wikipedia. We identified 1,967 newly created accounts that passed a basic test of making good-faith edits. We then randomly invited 1,751 of these users via their talk page to play the Wikipedia Adventure. The rest were sent no invitation. Out of those who were invited, 386 completed at least some portion of the tutorial.

We were interested in knowing whether those we invited to play the tutorial (our treatment group) and those we didn’t (our control group) contributed differently in the first six months after they created accounts on Wikipedia. Specifically, we wanted to know whether there was a difference in the total number of edits they made to Wikipedia, the number of edits they made to talk pages, and the average quality of their edits as measured by content persistence.

We conducted two kinds of analyses on our dataset. First, we estimated the effect of inviting users to play the Wikipedia Adventure on our three outcomes of interest. Second, we estimated the effect of playing the Wikipedia Adventure, conditional on having been invited to do so, on those same outcomes.

To our surprise, we found that in both cases there were no significant effects on any of the outcomes of interest. Being invited to play the Wikipedia Adventure therefore had no effect on new users’ volume of participation either on Wikipedia in general, or on talk pages specifically, nor did it have any effect on the average quality of edits made by the users in our study. Despite the very positive feedback that the system received in the survey evaluation stage, it did not produce a significant change in newcomer contribution behavior. We concluded that the system by itself could not reverse the trend of newcomer attrition on Wikipedia.

Why would a system that was received so positively ultimately produce no aggregate effect on newcomer participation? We’ve identified a few possible reasons. One is that perhaps a tutorial by itself would not be sufficient to counter hostile behavior that newcomers might experience from experienced editors. Indeed, the friendly, welcoming tone of the Wikipedia Adventure might contrast with strongly worded messages that new editors receive from veteran editors or bots. Another explanation might be that users enjoyed playing the Wikipedia Adventure, but did not enjoy editing Wikipedia. After all, the two activities draw on different kinds of motivations. Finally, the system required new users to choose to play the tutorial. Maybe people who chose to play would have gone on to edit in similar ways without the tutorial.

Ultimately, this work shows us the importance of testing systems outside of lab studies. The Wikipedia Adventure was built by community members to address known gaps in the onboarding process, and our survey showed that users responded well to its design.

While it would have been easy to declare victory at that stage, the field deployment study painted a different picture. Systems like the Wikipedia Adventure may inform the design of future orientation systems. That said, more profound changes to the interface or modes of interaction between editors might also be needed to increase contributions from newcomers.

This blog post, and the open access paper that it describes, is a collaborative project with Jake OrlowitzJonathan Morgan, Aaron Shaw, and Benjamin Mako Hill. Financial support came from the US National Science Foundation (grants IIS-1617129 and IIS-1617468), Northwestern University, and the University of Washington. We also published all the data and code necessary to reproduce our analysis in a repository in the Harvard Dataverse.

Community Data Science Collective at ICA 2017

A good chunk of the collective is heading to San Diego this week for the 2017 international communication association conference.

Here is a list of our ICA presentations, with links to the conference program which includes abstracts and other details:

In addition to papers, Aaron Shaw will also be chairing of the Critical Digital Labor and Algorithmic Studies session. Mon, May 29, 14:00 to 15:15, Hilton San Diego Bayfront, 2, Indigo 202A

We look forward to sharing research and socializing with you at ICA!

Roundup: Community Data Science Collective at CHI 2017

The Community Data Science Collective had an excellent week showing off our stuff at CHI 2017 in Denver last week. The collective presented three papers. If you didn’t make it Denver, or if just missed our presentations, blog post summaries of the papers — plus the papers themselves — are all online:

Additionally, Sayamindu Dasgupta’s “Scratch Community Blocks” paper — adapted from his dissertation work at MIT — received a best paper honorable mention award.

All three papers were published as open access so enjoy downloading and sharing the papers!

Children’s Perspectives on Critical Data Literacies

Last week, we presented a new paper that describes how children are thinking through some of the implications of new forms of data collection and analysis. The presentation was given at the ACM CHI conference in Denver last week and the paper is open access and online.

Over the last couple years, we’ve worked on a large project to support children in doing — and not just learning about — data science. We built a system, Scratch Community Blocks, that allows the 18 million users of the Scratch online community to write their own computer programs — in Scratch of course — to analyze data about their own learning and social interactions. An example of one of those programs to find how many of one’s follower in Scratch are not from the United States is shown below.

Last year, we deployed Scratch Community Blocks to 2,500 active Scratch users who, over a period of several months, used the system to create more than 1,600 projects.

As children used the system, Samantha Hautea, a student in UW’s Communication Leadership program, led a group of us in an online ethnography. We visited the projects children were creating and sharing. We followed the forums where users discussed the blocks. We read comment threads left on projects. We combined Samantha’s detailed field notes with the text of comments and forum posts, with ethnographic interviews of several users, and with notes from two in-person workshops. We used a technique called grounded theory to analyze these data.

What we found surprised us. We expected children to reflect on being challenged by — and hopefully overcoming — the technical parts of doing data science. Although we certainly saw this happen, what emerged much more strongly from our analysis was detailed discussion among children about the social implications of data collection and analysis.

In our analysis, we grouped children’s comments into five major themes that represented what we called “critical data literacies.” These literacies reflect things that children felt were important implications of social media data collection and analysis.

First, children reflected on the way that programmatic access to data — even data that was technically public — introduced privacy concerns. One user described the ability to analyze data as, “creepy”, but at the same time, “very cool.” Children expressed concern that programmatic access to data could lead to “stalking“ and suggested that the system should ask for permission.

Second, children recognized that data analysis requires skepticism and interpretation. For example, Scratch Community Blocks introduced a bug where the block that returned data about followers included users with disabled accounts. One user, in an interview described to us how he managed to figure out the inconsistency:

At one point the follower blocks, it said I have slightly more followers than I do. And, that was kind of confusing when I was trying to make the project. […] I pulled up a second [browser] tab and compared the [data from Scratch Community Blocks and the data in my profile].

Third, children discussed the hidden assumptions and decisions that drive the construction of metrics. For example, the number of views received for each project in Scratch is counted using an algorithm that tries to minimize the impact of gaming the system (similar to, for example, Youtube). As children started to build programs with data, they started to uncover and speculate about the decisions behind metrics. For example, they guessed that the view count might only include “unique” views and that view counts may include users who do not have accounts on the website.

Fourth, children building projects with Scratch Community Blocks realized that an algorithm driven by social data may cause certain users to be excluded. For example, a 13-year-old expressed concern that the system could be used to exclude users with few social connections saying:

I love these new Scratch Blocks! However I did notice that they could be used to exclude new Scratchers or Scratchers with not a lot of followers by using a code: like this:
when flag clicked
if then user’s followers < 300
stop all.
I do not think this a big problem as it would be easy to remove this code but I did just want to bring this to your attention in case this not what you would want the blocks to be used for.

Fifth, children were concerned about the possibility that measurement might distort the Scratch community’s values. While giving feedback on the new system, a user expressed concern that by making it easier to measure and compare followers, the system could elevate popularity over creativity, collaboration, and respect as a marker of success in Scratch.

I think this was a great idea! I am just a bit worried that people will make these projects and take it the wrong way, saying that followers are the most important thing in on Scratch.

Kids’ conversations around Scratch Community Blocks are good news for educators who are starting to think about how to engage young learners in thinking critically about the implications of data. Although no kid using Scratch Community Blocks discussed each of the five literacies described above, the themes reflect starting points for educators designing ways to engage kids in thinking critically about data.

Our work shows that if children are given opportunities to actively engage and build with social and behavioral data, they might not only learn how to do data analysis, but also reflect on its implications.

This blog-post and the work that it describes is a collaborative project by Samantha Hautea, Sayamindu Dasgupta, and Benjamin Mako Hill. We have also received support and feedback from members of the Scratch team at MIT (especially Mitch Resnick and Natalie Rusk), as well as from Hal Abelson from MIT CSAIL. Financial support came from the US National Science Foundation.

Surviving an “Eternal September:” How an Online Community Managed a Surge of Newcomers

Attracting newcomers is among the most widely studied problems in online community research. However, with all the attention paid to challenge of getting new users, much less research has studied the flip side of that coin: large influxes of newcomers can pose major problems as well!

The most widely known example of problems caused by an influx of newcomers into an online community occurred in Usenet. Every September, new university students connecting to the Internet for the first time would wreak havoc in the Usenet discussion forums. When AOL connected its users to the Usenet in 1994, it disrupted the community for so long that it became widely known as “The September that never ended.

Our study considered a similar influx in NoSleep—an online community within Reddit where writers share original horror stories and readers comment and vote on them. With strict rules requiring that all members of the community suspend disbelief, NoSleep thrives off the fact that readers experience an immersive storytelling environment. Breaking the rules is as easy as questioning the truth of someone’s story. Socializing newcomers represents a major challenge for NoSleep.

Number of subscribers and moderators on /r/NoSleep over time.

On May 7th, 2014, NoSleep became a “default subreddit”—i.e., every new user to Reddit automatically joined NoSleep. After gradually accumulating roughly 240,000 members from 2010 to 2014, the NoSleep community grew to over 2 million subscribers in a year. That said, NoSleep appeared to largely hold things together. This reflects the major question that motivated our study: How did NoSleep withstand such a massive influx of newcomers without enduring their own Eternal September?

To answer this question, we interviewed a number of NoSleep participants, writers, moderators, and admins. After transcribing, coding, and analyzing the results, we proposed that NoSleep survived because of three inter-connected systems that helped protect the community’s norms and overall immersive environment.

First, there was a strong and organized team of moderators who enforced the rules no matter what. They recruited new moderators knowing the community’s population was going to surge. They utilized a private subreddit for NoSleep’s staff. They were able to socialize and educate new moderators effectively. Although issuing sanctions against community members was often difficult, our interviewees explained that NoSleep’s moderators were deeply committed and largely uncompromising.

That commitment resonates within the second system that protected NoSleep: regulation by normal community members. From our interviews, we found that the participants felt a shared sense of community that motivated them both to socialize newcomers themselves as well as to report inappropriate comments and downvote people who violate the community’s norms.

Finally, we found that the technological systems protected the community as well. For instance, post-throttling was instituted to limit the frequency at which a writer could post their stories. Additionally, Reddit’s “Automoderator”, a programmable AI bot, was used to issue sanctions against obvious norm violators while running in the background. Participants also pointed to the tools available to them—the report feature and voting system in particular—to explain how easy it was for them to report and regulate the community’s disruptors.

This blog post was written with Benjamin Mako Hill. The paper and work this post describes is collaborative work with Benjamin Mako Hill and Andrés Monroy-Hernández. The paper was published in the Proceedings of CHI 2016 and is released as open access so anyone can read the entire paper here. A version of this blogpost was posted on Benjamin Mako Hill’s blog Copyrighteous.